文章编号: 0258-7025(2010)07-1794-06

全保偏结构的光纤偏振耦合测试系统

林惠祖 姚 琼 胡永明

(国防科学技术大学光电科学与工程学院,湖南长沙 410073)

摘要 在对白光干涉仪及白光干涉法偏振耦合(PC)测试原理进行分析的基础上,设计搭建基于白光干涉法的全保 偏光纤结构的迈克耳孙(Michelson)干涉仪偏振耦合测试系统,实现对保偏光纤(PMF)偏振耦合的检测,并进行了 单耦合点和多耦合点测试实验,耦合系数探测灵敏度可达 70 dB,得到较好的实验结果,验证了白光光纤 Michelson 干涉法偏振耦合测试的可行性。最后,使用超辐射发光二极管(SLD)光源、放大自发辐射(ASE)光源和掺铒光纤放 大器(EDFA)光源对小耦合系数的保偏光纤偏振的耦合系数进行测量,分别得到 0.36%,1.8%和 2.5%的测量误 差,验证了系统的精确性。

关键词 光纤光学;保偏光纤;偏振耦合;光纤白光干涉仪 中图分类号 TN253;O436.3 **文献标识码** A **doi**: 10.3788/CJL20103707.1794

Testing System of Fiber Polarization Coupling Based on Polarization Maintaining Structure

Lin Huizu Yao Qiong Hu Yongming

(College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China)

Abstract By theoretically analysing white-light interferometer and the testing principle of polarization coupling (PC) in polarization maintaining fiber (PMF) based on white-light interferometer, a fiber Michelson interferometer testing system of polarization coupling in polarization maintaining fiber based on white-light interferometer is designed. Testing experiments of polarization coupling in PMF are made and a good result of 70 dB detection sensitivity is obtained. The feasibility and veracity of polarization coupling testing based on white-light fiber Michelson interferometer are validated. Finally, a small PMF coupling coefficient is tested using different light sources including super luminescent diode (SLD), amplified spontaneous emission (ASE) and erbium-doped fiber amplifier (EDFA). Then we get the measurement error of 0.36%, 1.8% and 2.5% respectively, which verify the accuracy of the testing system.

Key words fiber optics; polarization maintaining fiber; polarization coupling; fiber white-light interferometer

1 引

言

光纤陀螺是利用光纤传感技术测量空间惯性转 动率的一种新型传感器,它利用萨格纳克效应实现 对旋转角速度的测量,是一种高精度的惯性传感器 件,我国已将光纤陀螺列为惯性技术领域重点发展 的关键技术之一^[1]。光纤环是光纤陀螺的核心光学 元件,光纤环中影响性能的主要问题来自于偏振和 双折射,它不仅造成信号的衰减,而且还能产生一个 寄生的相位差,引起信号漂移,导致光纤陀螺测量角 度误差。为了改善谐振腔交叉偏振耦合(PC)引起 的误差问题,一般在光纤环采用保偏光纤(PMF)基 础上,在环形腔内增加一个光纤主轴旋转 90°熔接 点的保偏光纤谐振腔结构^[2]。

虽然此光纤环结构能很好地改善光纤环的偏振 特性,但是由于各种内外部干扰如光纤内部应力区 缺陷、横向应力、弯曲、扭转等,仍会引起光从一个偏

收稿日期: 2009-11-25; 收到修改稿日期: 2010-01-06

作者简介:林惠祖(1985—),男,博士研究生,主要从事光纤技术及其相关方面的研究。E-mail: linhuizu2@126.com 导师简介:胡永明(1960—),男,教授,博士生导师,主要从事光纤传感技术等方面的研究。E-mail: sdss@21cn.com

振态耦合到另一个偏振态上去,发生偏振态模式耦 合现象。保偏光纤的这种偏振耦合现象在各种系统 中将表现为噪声、信号漂移、信号衰减等现象,导致 系统偏振消光比降低,进而影响系统性能。在光纤 陀螺中就会引起保偏光纤谐振腔的偏振波动,影响 到陀螺的测量精度和稳定性。因此,对保偏光纤的 偏振耦合测试进行研究是极其必要的。利用偏振耦 合测试,可以准确给出耦合点位置及耦合强度,通过 对保偏光纤中偏振耦合现象的检测,可以作为保偏 光纤制造及使用中的一种有效的检测手段,进而提 高保偏光纤的出厂质量,改善保偏光纤光纤环的性 能,进而提高光纤陀螺的性能。

2 保偏光纤偏振耦合检测方法

保偏光纤偏振耦合现象如图 1 所示。在保偏光 纤输入端只激励 HE_{11x}模的情况下,由于存在正交 模式耦合,输出端会有两个偏振分量 HE_{11x}和 HE_{11y},定义它的偏振耦合系数为

式中 P_x , P_y 分别表示激励模 HE_{11x}和耦合模 HE_{11y} 的功率。

由于保偏光纤光纤环的偏振特性对光纤陀螺的 测量精度有着重要的影响,因而需要对保偏光纤中 的偏振耦合进行检测。从第一种测试光纤中双折射 分布的偏振时域反射法开始,已有多种检测原理和 方案用于偏振耦合测试。目前,对偏振耦合的检测 方法有以下几种^[3]:偏振光时域反射仪(POTDR)、 迈克耳孙 (Michelson) 白光干涉仪、马赫-曾德尔 (Mach-Zehnder)干涉仪、调频载波(FMCW)法、锁 模光纤环激光器法、基于 Kerr 效应的耦合点位置检 测法、光学相干偏振检测仪(OCDP)和波长扫描法 等。国内从 20 世纪 90 年代起就开始了保偏光纤偏 振耦合问题的研究,清华大学^[4]、上海交通大学^[5]、 天津大学[6]、电子科技大学[7]、中国科学院[8]等都先 后开展了保偏光纤偏振耦合测试及其应用的研究, 并将其应用于光纤陀螺光纤环检测、分布式传感等 工程中。

近年来,采用低相干光源的白光干涉技术取得 了较大发展,因其可以进行大动态范围的绝对测量, 且具有分辨率高,对外部干扰不敏感等优点^[7],成为 国内外测量及传感领域的一个研究热点。利用白光 扫描干涉法进行保偏光纤偏振耦合检测,"白光"短 的相干长度利于提高偏振耦合测试的空间分辨力和 光学系统抗干扰能力,可以成为检测保偏光纤谐振 腔参数和技术指标的一种有效手段。Michelson 白 光干涉仪^[9]利用宽光谱、相干长度很短的光源,通过 干涉现象来实现对微小参量的高精度测量。

在全保偏光纤 Michelson 干涉仪及传感器研究 的基础上^[10~14],设计了白光光纤 Michelson 干涉仪 偏振耦合测试系统,其结构如图2所示。宽谱光源 出射光经 APC 光纤跳线出射后经过保偏光纤偏振 器耦合进保偏光纤中,使输入光偏振方向与保偏光 纤主轴方向相同,则只有一种偏振态被激发,且在理 想情况下只有该偏振态在光纤中传播。当光纤中一 点发生偏振耦合时,一部分光能将耦合到正交的偏 振态上去,由于双折射效应,两偏振模式将以不同的 速度沿光纤传播,从光纤出射时,将产生光程差 Δnl ,其中 Δn 为保偏光纤的双折射系数,l 为耦合点 至光纤出射端的距离。再经保偏光纤偏振器投影到 同一偏振方向,经过耦合器分成两束光进入光纤干 涉仪的两臂中,一束光通过光纤反射膜反射回耦合 器,另一束光通过准直器准直后通过反射镜反射回 耦合器,通过直线电动台的移动来补偿扫描光程差 △nl 产生干涉现象,将在输出光中产生一些干涉尖 峰,干涉尖峰的位置将反映偏振串扰点的位置,高度 反映了偏振串扰的强度,两束光干涉输出后进入光 电探测器显示输出。

- 图 2 白光光纤 Michelson 干涉仪偏振耦合测试系统结构图 Fig. 2 Scheme of polarization coupling testing system based on white light fiber Michelson interferometer
- 3 白光光纤 Michelson 干涉仪保偏光 纤偏振耦合测试实验
- 3.1 保偏光纤单耦合点和多耦合点的偏振耦合 通过分析,对保偏光纤单耦合点进行偏振耦合

光

 $I = \frac{A^2}{4} \{1 + \gamma(\Delta Z) \cos(k\Delta Z) +$

 $2\sqrt{h(1-h)\gamma}(\Delta nl)\cos(k\Delta nl) +$

到的干涉扫描波形如图 3(b)所示。

 $\sqrt{h(1-h)\gamma}(\Delta Z - \Delta nl) \cos[k(\Delta Z - \Delta nl)] +$

 $\sqrt{h(1-h)\gamma}(\Delta Z + \Delta nl) \cos[k(\Delta Z + \Delta nl)]$, (3)

式中 A 为入射光振幅, $\gamma(\Delta x) = \exp[-(2\Delta x/L_e)^2]$ 为光源的自相干函数,符合高斯函数 Δx 为光程差, L_e 为光源的相干长度, $k = 2\pi/\lambda$ 为真空中的波数,

 $\Delta n = n_x - n_y$ 。其仿真结果如图 3(a)所示,实验观察

中

$$h = \frac{1}{1 + \cot^2 \alpha},\tag{2}$$

可得偏振系数为*h*=0.25,式中 α 为 B 点熔接时的 对接角度。同时,由耦合点干涉理论推导得到单耦 合点时干涉公式

图 3 单耦合点偏振耦合仿真结果(a)和实验结果(b) Fig. 3 Emulation (a) and experiment (b) results of single polarization coupling point testing

由图 3 可以看出,实验结果能和仿真结果较好 吻合,证明了 Michelson 白光光纤干涉仪测量偏振 耦合的可行性。为了得到耦合系数的大小,将示波 器保存的数据导出,通过一定的数据处理用 Matlab 软件重构干涉波形,如图 4 所示。

Fig. 4 Interference waveform obtained by data processing
 由图 4 可以得到耦合次峰和偏振主峰之间比值
 为 η=0.431,根据耦合系数计算公式

$$h = \frac{1 - \sqrt{1 - 4\eta^2}}{2}.$$
 (4)

通过计算得被测光纤耦合点的耦合系数h=

0.247,通过与理论数据 0.25 比较可得,耦合系数误 差 1.2%,实验数据与理论数据符合较好。

为了观察保偏光纤中存在多个耦合点时的干涉 现象,进行了双耦合点和三耦合点的保偏光纤偏振 耦合仿真和测试实验。采用对被测光纤施加外部应 力的方式来施加耦合点,保偏光纤双耦合点偏振耦 合测试仿真结果和实验结果如图 5(a)和(b)所示。

保偏光纤三耦合点偏振耦合测试仿真结果和实验结果如图 6(a)和(b)所示。由图 5 和 6 可见,通过该系统可以观察到双耦合点和三耦合点时的干涉现象,不难想象,当保偏光纤中存在若干耦合点时,通过一次扫描就可以得到所有耦合点的位置和耦合系数。但是随着点数的增多,耦合点之间的分辨就成为了必须考虑的问题。由光纤拍长 3 mm 即光纤双折射系数差 Δn 为 5.16×10⁻⁴,则有系统空间分辨率为

$$L_{\rm D} = \frac{\lambda^2}{\Delta\lambda\Delta n} = \frac{(1550 \times 10^{-9})^2}{10 \times 10^{-9} \times 5.16 \times 10^{-4}} = 465.6 \text{ mm.}$$
(5)

图 6 三耦合点偏振耦合仿真结果(a)和实验结果(b)

Fig. 6 Emulation (a) and experiment (b) results of three polarization coupling point testing

所以如果两个耦合点的距离大于 465.6 mm, 系统就有可能识别两个点。由上分析可见,空间分 辨率与测量范围正好相反,大双折射系数的光纤即 小拍长保偏光纤的空间分辨率将较大。在目前条件 下,光源线宽可大于 50 nm,而较新的光子晶体保偏 光纤的双折射可达 3.7×10⁻³,由此得到系统的空 间分辨率可高达 13 mm。但是在现有实验条件下, 由于光源线宽较窄且保偏光纤双折射系数较小,系 统的空间分辨率不是很高。当被测对象存在多个耦 合点时,将不利于偏振耦合点之间的辨别,导致测量 误差。提高光源谱宽和光纤的双折射系数可以有效 地提高系统的空间分辨率。

3.2 小偏振耦合系数的偏振耦合

虽然通过施加应力引入的保偏光纤的偏振耦合 系数较大,测量较容易,但是实际中一般的偏振耦合 系数都比较小,因此需要对小耦合系数的保偏光纤 的偏振耦合进行测量,以验证系统的实用性。为了 提高测试系统的灵敏度和测试精度,将反射膜端光 纤绕到压电陶瓷(PZT)上,采用外调制的方法,用 12.5 kHz 的正弦信号调制光路,步进电机由 VC++程序通过采集卡发射脉冲信号控制,可以对 直线电动台整步运行距离进行控制,用采集精度更 高的 A/D 采集卡代替示波器采集数据,信号检测方 案改用相位产生载波(PGC)调制解调方案并通过采 集卡给出干涉条纹的干涉度 $B^{[15]}$ 。未接通光路时, 测得 B 值的噪声本底可达 10^{-4} 量级,即 η 的探测精 度可以达到 10^{-4} 量级,将其代入(4)式,计算得系统 耦合系数 h 的探测灵敏度可达 70 dB。

首先对平行对接时的干涉进行测量,测量光源 本身的干涉图,图7为超辐射发光二极管(SLD)、放 大自发辐射(ASE)和掺铒光纤放大器(EDFA)光源 干涉图,其中直线电动台每步运行距离2.5μm。由 于B值的大小与光源输出光功率大小有关,因此采 用归一化的B值进行比较。根据白光干涉原理,由

图 7 SLD, ASE 和 EDFA 光源干涉图 Fig. 7 Interference charts of SLD, ASE and EDFA light sources

光源自相干函数 $\gamma(\Delta x) = \exp[-(2\Delta x/L_c)^2]$,当 Δx 大于光源相干长度时, $\gamma(\Delta x)$ 迅速趋于 0,所以干 涉包络半宽度的实际光程差约为光源的相干长度。

由图 7 干涉的包络可以求得 SLD, ASE 和 EDFA 光源的相干长度分别为 175,275 和 385 μm, 进而求得光源线宽分别为 13.7,8.7 和 6.2 nm,所 以采用 SLD 光源的测量系统空间分辨率优于其他 两个光源,但是其输出功率太小,限制了其在偏振耦 合测试中的应用。在上面的测试中,认为保偏光纤 的双折射与波长无关,但是在实际中,保偏光纤的双 折射是与波长相关的,存在双折射色散,即保偏光纤 快慢轴色散系数是不同的,不同波长具有不同的双 折射。由于偏振耦合测试采用宽谱光源,因此色散 在干涉中有着重要影响,随着耦合点距光纤出射端 距离的变化使得干涉包络展宽和干涉条纹可见度变 差。由于测试的保偏光纤长度较短,所以由于双折 射色散引起的包络展宽基本可以忽略,但是需要说 明的是实际上光源的谱宽应该略大于实验结果。

在上述实验中,对光源的干涉波形已有所了解, 下面 B 点采用 3°对接引入耦合点,根据入射对接角 度和耦合系数的关系式(2),算得理论耦合系数为 0.00274,C 点 45°对接,观察干涉现象。在实验中采 用 SLD,ASE 和 EDFA 光源进行测试,用采集精度 更高的 A/D 采集卡代替示波器采集数据,采用相位载 波(PGC)调制解调方法^[5]对干涉后的干涉度 B 进行测 量,由于 B 值的大小与光源输出光功率大小有关,因此 采用归一化的 B 值进行比较,测量结果如图 8 所示。

由图 8 得到 SLD, ASE 和 EDFA 光源测量对应的耦合次峰和主峰的比值分别为 0.05236, 0.05272 和 0.05296, 根据(3)式可以求得采用 SLD, ASE 和 EDFA 光源实际测量得到的耦合系数分别为 0.00275, 0.00279 和 0.00281, 比较实验结果和理论

- 图 8 SLD, ASE 和 EDFA 光源小耦合系数测试结果
- Fig. 8 Testing results of small coupling coefficient for SLD, ASE and EDFA light source, respectively

耦合系数 0.00274,可得误差分别为 0.36%,1.8% 和 2.5%,可以看出在该实验中三种光源均能得到 较好的测量精度。

4 结 论

光

激

根据白光干涉的原理,对保偏光纤的偏振耦合 测试系统进行研究,并且基于白光 Michelson 干涉 仪保偏光纤的偏振耦合测试理论,设计了全保偏结 构的白光光纤 Michelson 干涉仪偏振耦合测试系 统,对保偏光纤进行单耦合点和多耦合点的偏振耦 合测试实验,得到了比较好的实验结果,验证了保偏 光纤偏振耦合测试理论的正确性和测试系统的可行 性。进而使用不同光源进行小耦合系数的偏振耦合 测试,得到误差为 0.36%的好结果,证明了系统的 精确性。相对于空间结构的偏振耦合测试系统,光 纤结构的偏振耦合测试系统具有调节简单、结构紧 凑,更便于系统化、仪器化和实际应用。另外,该保 偏光纤偏振耦合测试系统也可用于应力、位置和温 度传感等领域,有较好的发展前景。

参考文献

- H. C. Lefevre. The Fiber-Optic Gyroscope [M]. Zhang Guicai, Wang Wei Transl.. Beijing: National Defense Industry Press, 2002
- H. C. Lefevre. 光纤陀螺仪 [M]. 张桂才, 王 巍 译. 北京: 国防工业出版社, 2002
- 2 L. K. Strandjord, G. A. Sanders. Resonator fiber optic gyro employing a polarization-rotating resonator [J]. SPIE, 1991, 1585: 163~172
- 3 Tang Feng. Testing and application of polarization coupling in polarization maintaining fiber using white light interferometry [D]. Tianjin: Tianjin University, 2005
- 唐 峰. 白光干涉法保偏光纤偏振耦合测试及其应用 [D]. 天 津: 天津大学, 2005
- 4 Tang Quan'an, Ma Xinyu. Study of polarization maintaining fiber ring resonator [J]. Laser Technology, 1998, 22(5): 265~267 汤全安,马新宇,保偏光纤环形谐振腔研究 [J]. 激光技术, 1998, 22(5): 265~267
- 5 Li Jiacheng, Zhang Yanhua, Polarization fluctuation analyses in passive ring resonator fiber optical gyro [J]. Joural of Shanghai Jiaotong University, 1999, 33(10): 117~119 李佳程,张炎华,被动式谐振腔光纤陀螺的偏振分析 [J]. 上海 交通大学学报, 1999, 33(10): 117~119

6 Man Xiaoming, Zhang Yimo, Zhou Ge et al.. The polarization state controling of distributed polarization coupling analyser [J]. J. Optoelectronics · Laser, 2002, 13(10): 1022~1025 满小明,张以谟,周 革等. 光纤寄生偏振耦合测试仪偏振态的 调整 [J]. 光电子与激光, 2002, 13(10): 1022~1025

- 7 Zhou Xiaojun, Gong Junjie, Liu Yongzhi *et al.*. Analysis of white-light interference distributed optic fiber sensor by polarized modes coupling [J]. *Acta Optica Sinica*, 2004, 24(5): 605~608 周晓军, 龚俊杰, 刘永智等. 白光干涉偏振模耦合分布式光纤传 感器分析 [J]. 光学学报, 2004, 24(5): 605~608
- 8 Yuan Shi, Li Haifeng, Application of FPGA in polarization coupling analyzer [J]. Instrument Technique and Sensor, 2004,

中

(11): 17~19

袁 实,李海峰, FPGA 在偏振耦合测试仪中的应用 [J]. 仪表 技术与传感器, 2004, (11): 17~19

- 9 Yao Jianyong, Zhang Sen, Wang Zhen *et al.*. Investigation of fiber-optic Michelson interferometer system [J]. *Study on Optical Communications*, 2007, (2): 45~48
 - 姚建永,张 森,王 臻 等.光纤 Michelson 干涉仪系统的研究 [J].光通讯研究,2007,(2):45~48
- 10 Hu Yongming, Chen Zhe, Meng Zhou et al.. An all polarizationmaintaining fiber Michelson interferometer [J]. Chinese J. Lasers, 1997, A24(10): 891~894
 胡永明,陈 哲,孟 洲等. 全保偏光纤迈克尔逊干涉仪 [J]. 中国激光, 1997, A24(10): 891~894
- 11 Hu Yongming, Liao Yanbiao, Chen Zhe *et al.*. Manufacture of a double polarization structure of polarization maintaining fiber polarizer [J]. 光学学报, 2001, 21(6): 741~743
 胡永明,廖延彪,陈 哲等. 双偏振结构保偏光纤偏振器的研制 [J]. 光学学报, 2001, 21(6): 741~743
- 12 Xiong Shuidong, Luo Hong, Hu Yongming et al.. Research on

interferometric polarization maintaining fiber optic micro-vibration vector sensor [J]. *Chinese J. Lasers*, 2004, **31**(7): 843~847 熊水东,罗 洪,胡永明等.干涉型保偏光纤微振动矢量传感器 研究 [J]. 中国激光, 2004, **31**(7): 843~847

- 13 Zhang Xueliang, Zhou Xiaojun, Hu Yongming *et al.*. All polarization-maintaining fiber earth magnetic field sensor [J]. *Chinese J. Lasers*, 2005, **32**(11): 1515~1518 张学亮,周晓军,胡永明等. 全保偏光纤地磁传感器 [J]. 中国 激光, 2005, **32**(11): 1515~1518
- 14 Meng Zhou, Hu Yongming, Xiong Shuidong et al.. All polarization maintaining fiber hydrophone array [J]. Chinese J. Lasers, 2002, A29(5): 415~417
 孟 洲,胡永明,熊水东等. 全保偏光纤水听器阵列 [J]. 中国 激光, 2002, A29(5): 415~417
- 15 Ni Ming, Investigation of the key technologies of fiber optic hydrophone [D]. Beijing: Chinese Academy of Sciences, 2003 倪 明. 光纤水听器关键技术研究 [D]. 北京:中国科学院, 2003